R19

Q.P. Code: 19HS0851

Reg. No:					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year I Semester Regular Examinations January 2020 SEMICONDUCTOR PHYSICS

		SEMICONDUCTOR PHYSICS	
		(CSE and CSIT)	
Time:	3 h	ours Max. Marks: 60	
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I	
1		Describe the electrical conductivity in a metal using quantum free electronic theory. Write advantages of quantum free electron theory over classical free electron theory. OR	8M 4M
2	a	What is effective mass of an electron? Obtain the expression for effective mass of electron in periodic potential.	8M
	b	Find relaxation time of conduction electron in metal if its resistivity is $1.54 \times 10^{-8}\Omega$ -m and it has 5.8×10^{28} conduction electron/m ³ . Given that m= 9.1×10^{-31} kg, e = 1.6×10^{-19} C.	4M
		UNIT-II	
3	a	Explain the formation of p-n junction diode.	6M
	b	Elaborate the variations in width of depletion layer under forward and reverse biased conditions.	6M
4		OR	03/4
4		Discuss the construction and working mechanism of LED. Determine the wavelength of LED fabricated by the CdS material with band gap of 2.45eV.	8M 4M
		UNIT-III	
5	a	Outline the behavior of particle in a one-dimensional infinite potential well in terms	8M
		of eigen values and eigen function.	
	b	An electron is confined to a one-dimensional potential box of 2 Å width then,	4M
		calculate the energies corresponding to the second and forth quantum states (in eV). OR	
6	a	Write Maxwell's equations for electromagnetic waves in differential and integral form.	6M
	b	Explain the propagation of electromagnetic wave in non-conducting media. UNIT-IV	6M
7	a	Derive the relation between the various Einstein's coefficients of absorption and	8M
	_	emission of radiation.	
	b	Explain the condition for population inversion. OR	4M
8	a	Differentiate step index and graded index fibers.	6M
		Give the applications of an optical fiber in various fields.	6M
		UNIT-V	
9		Explain the Sol-Gel technique for synthesis of nanomaterial.	6M
	b	Write the advantages of sol-gel process.	6M
10	9	OR What are carbon nanotubes? Mention its structures.	6M
10		Describe the applications of Carbon nanotubes.	6M
	-	**************************************	

*** END ***